using bisection method,find the zero of the function f(x)=e^x - 2x^2 in the interval [2.5, 3] with the tolerance `epsi` = 10^-2. Record the values a`kappa` , b`kappa` , and x`kappa` as well as an estimate for the error at every step. Answer: zero `~~`  _________

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`f(x) = e^x -2*x^2`

We observe that

`f(2.5) = e^2.5 -2*2.5^2 =-0.317<0`

`f(3) =e^3 -2*3^2 =2.085 >0`

Iteration number:

1.

`a_1 =2.5` , `b_1 =3` , `x_1 =2.5+(3-2.5)/2 =2.75`

`f(x_1) =e^2.75-2*2.75^2 =0.517 >0`

error `|x-x_1| <=(b_1-a_1)/2^1 =(3-2.5)/2 =0.25 >0.01`

2.

`a_2 =2.5` , `b_2 =2.75` , `x_2 =2.5 +(2.75-2.5)/2 =2.625`

`f(x_2) =e^2.625 -2*2.625^2 =0.023 >0`

`|x-x_2| <= (b_1-a_1)/2^2 =(3-2.5)/4 =0.125 >0.01`

3.

`a_3 =2.5` ,`b_3 =2.625` , `x_3 =2.5 +(2.625-2.5)/2 =2.5625`

`f(x_3) =e^2.5625 -2*2.5625^2 =-0.164 <0`

`|x-x_3| <= (b_1-a_1)/2^3 =(3-2.5)/8 =0.0625 >0.01`

4.

`a_4 =2.5625` , `b_4 =2.625` ,

`x_4 = 2.5625 +(2.625-2.5625)/2 =2.59375`

`f(x_4) =-0.075 <0`

`|x-x_4| <=(b_1-a_1)/2^4 =(3-2.5)/16 =0.03125 >0.01`

5.

`a_5 =2.59375` , `b_5 =2.625` , `x_5 = 2.609375`

`f(x_5) =-0.027 <0`

`|x -x_5|<= (b_1-a_1)/2^5 =(3-2.5)/32 =0.015625 >0.01`

6.

`a_6 =2.609375` , `b_6 = 2.625` , `x_6 =2.6171875`

`f(x_6) =-0.0022 <0`

`|x-x_6|<=(b_1-a_1)/2^6 =(3-2.5)/64 =0.078125 <0.01`

Answer: zero `~~` 2.6171875

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team