The upper sum `U` is the sum of the highest point of the function in each of the `m=5` intervals multiplied by the width of the intervals

`U = 0.2(f(0)+f(0.2)+f(0.4)+f(0.6)+f(0.8)) = `

`0.2v(1 + 0.96 + 0.84 + 0.64 + 0.36) = 0.760v`

The lower sum`L` is the sum of the lowest point of the function in each of the `m` intervals multiplied by the width of the intervals

`L = 0.2(f(0.2)+f(0.4)+f(0.6)+f(0.8)) = `

`0.2v(0.96+0.84+0.64+0.36+0) = 0.560v`

The integral is approximated by

`L+(U-L)/2 = 0.660v`

`int_0^1 v(1-x^2)dx approx 0.660v` **answer**

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now