Use the Midpoint Rule with the given value of n to approximate the integral. Use the Midpoint Rule with the given value of n to approximate the integral. Integral 0 to (pi/2) 2cos^(5)x dx ,...
Use the Midpoint Rule with the given value of n to approximate the integral.
Use the Midpoint Rule with the given value of n to approximate the integral.
Integral 0 to (pi/2) 2cos^(5)x dx , n=4 M4=__________________?
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,349 answers
starTop subjects are Math, Science, and Business
You should evaluate the integral using midpoint rule, hence, you need to split the interval `[0,pi/2]` in n = 4 subintervals of equal width such that:
`[0 , pi/8] , [pi/8 , pi/4] , [pi/4 , 3pi/8] , [3pi/8 , pi/2]`
You need to find the midpoint of each subinterval such that:
`x_1 = (pi/8 - 0)/2 , x_2 = (pi/4 - pi/8)/2 , x_3 = (3pi/8 - pi/4)/2 , x_4 = (pi/2 - 3pi/8)/2`
Evaluating the integral using the midpoint rule, yields:
`int_0^(pi/2) 2 cos^5 x dx = 2(pi/2 - 0)/2(cos^5 ((pi/8 - 0)/2) + cos^5 ((pi/4 - pi/8)/2) + cos^5 ((3pi/8 - pi/4)/2) + cos^5((pi/2 - 3pi/8)/2))`
`int_0^(pi/2) 2 cos^5 x dx = pi/2*(cos^5 (pi/16) + cos^5(3pi/16) + cos^5(5pi/16) + cos^5(7pi/16))`
`cos^2 pi/8 = (1 + cos(pi/4))/2 = (2 + sqrt2)/4 => cos pi/8 = (sqrt(2 + sqrt2))/2`
`cos^2 (pi/16) =(2 + (sqrt(2 + sqrt2)))/4`
`cos^5 (pi/16) = (2 + (sqrt(2 + sqrt2)))^2/32*sqrt(2 + (sqrt(2 + sqrt2)))`
`cos(3pi/16) = cos(pi/16 + pi/8) = cos(pi/16)cos(pi/8) - sin(pi/16)sin(pi/8)`
`cos(3pi/16) = (sqrt(2 + (sqrt(2 + sqrt2)))/2)*(sqrt(2 + sqrt2))/2 - (sqrt(2- (sqrt(2 - sqrt2)))/2)*(sqrt(2- sqrt2))/2`
`cos(5pi/16) = cos(3pi/16 + pi/8) = cos(3pi/16)cos(pi/8) - sin(3pi/16)sin(pi/8)`
`cos(7pi/16) = cos(5pi/16 + pi/8) = cos(5pi/16)cos(pi/8) - sin(5pi/16)sin(pi/8)`
Hence, evaluating the given integral using the midpoint rule yields `int_0^(pi/2) 2 cos^5 x dx = pi/2*(cos^5 (pi/16) + cos^5(3pi/16) + cos^5(5pi/16) + cos^5(7pi/16)).`
Related Questions
- Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to...
- 1 Educator Answer
- Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to...
- 1 Educator Answer
- `int_0^(pi/2)cos^4 (x)dx, n = 4` Use the Midpoint Rule with the given value of `n` to...
- 1 Educator Answer
- `int_0^2x/(x + 1)dx, n = 5` Use the Midpoint Rule with the given value of `n` to approximate...
- 1 Educator Answer
- `int_1^5(x^2)(e^(-x))dx, n = 4` Use the Midpoint Rule with the given value of `n` to...
- 1 Educator Answer
Unlock This Answer Now
Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.