use limit laws to find the limit n-1/n^2+1 as x approaches negative infinity

2 Answers | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You need to evaluate the following limit such that:

`lim_(n->-oo) (n - 1)/(n^2 + 1)`

Substituting `-oo`  for n yields:

`lim_(n->-oo) (n - 1)/(n^2 + 1) = (-oo-1)/(oo+1) = -oo/oo`

Since the result is indeterminate -`oo/oo` , you may use l'Hospital's theorem such that:

`lim_(n->-oo) (n - 1)/(n^2 + 1) = lim_(n->-oo) ((n - 1)')/((n^2 + 1)')`

`lim_(n->-oo) (n - 1)/(n^2 + 1) = lim_(n->-oo) 1/(2n)`

Substituting -`oo`  for n yields:

`lim_(n->-oo) 1/(2n) = 1/(2*(-oo)) = 1/(-oo) = 0`

Hence, evaluating the given limit, using l'Hospital's theorem, yields `lim_(n->-oo) (n - 1)/(n^2 + 1) = 0.`

embizze's profile pic

embizze | High School Teacher | (Level 1) Educator Emeritus

Posted on

Find `lim_(x->-oo) (n-1)/(n^2+1)`


`=lim_(x->-oo)(n-1)/(n^2+1)*(1/n^2)/(1/n^2)` Multiply by "1"

`=lim_(n->-oo)(1/n-1/n^2)/(1+1/n^2)`    Algebra

`=(lim_(n->-oo)(1/n-1/n^2))/(lim_(n->-oo)(1+1/n^2))` Limit of quotient is the quotient of limits

`=(lim_(n->-oo)1/n-lim_(n->-oo)1/n^2)/(lim_(n->-oo)1+lim_(n->-oo)1/n^2)` Limit of sum/difference is sum/diff of limits

`=(0-0)/(1+0)`                     `lim_(n->+-oo)1/n^k=0` for `k>1`


Thus the limit is zero.

L'Hospital's rule can of course be used, but the instructions were to use the properties of limits.

We’ve answered 319,197 questions. We can answer yours, too.

Ask a question