Use the law of exponents to rewrite the following as a sum or difference and without exponents: a) log base a of (x^2/yz^3) b) log (x/cube root of 1-x)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

I need to rewrite the answer b) such that:

`log (x/root(3)(1-x)) = log x - (1/3)log(1-x)`

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

a) You need to use the quotient law to convert the logarithm of quotient in a difference of two logarithms such that:

`log_a (x^2/(yz^3)) = log_a x^2 - log_a (yz^3)`

You need to convert the logarithm of product in a sum of two logarithms such that:

`log_a (yz^3) = log_a y + log_a (z^3)`

You need to use exponent law to write `log_a x^2`  and `log_a (z^3) ` such that:

`log_a (x^2/(yz^3)) = 2log_a x -log_a y - 3log_a z`

Hence, evaluating `log_a (x^2/(yz^3))`  yields `log_a (x^2/(yz^3)) = 2log_a x - log_a y - 3log_a z` .

b) You need to use the quotient law to convert the logarithm of quotient in a difference of two logarithms such that:

`log x/(root(3)(1-x)) = log x - log (root(3)(1-x))`

You need to remember that `(root(3)(1-x)) = (1-x)^(1/3)`

`log x/(root(3)(1-x)) = log x - log (1-x)^(1/3)`

`log x/(root(3)(1-x)) = log x - (1/3)*log (1-x)`

Hence, evaluating`log x/(root(3)(1-x)) ` yields `log x/(root(3)(1-x)) = log x - (1/3)*log (1-x).`

Approved by eNotes Editorial Team
Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial