Use the fundamental theorem of calculus to findd/dx integral from (-x)^x [z-1]/[z+2] dz (-x) is suppose to be on the bottom and (x) is suppose to be on the top. Also, please split the integral to two integrals each of which will have only one limit that varies. I geuss you can call it the early stages of the Fundamental Theorem. We haven't learned more about it yet.
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You need to evaluate the definite integral using the linearity of integral such that:
`int_(-x)^x (z - 1)/(z + 2) dz = int_(-x)^x z/(z + 2)dz - int_(-x)^x 1/(z+2) dz`
`int_(-x)^x z/(z + 2)dz = int_(-x)^x (z+2-2)/(z + 2)dz`
`int_(-x)^x z/(z + 2)dz = int_(-x)^x (z + 2)/(z + 2)dz - int_(-x)^x 2/(z + 2)dz`
`int_(-x)^x (z - 1)/(z + 2) dz = int_(-x)^x (z + 2)/(z + 2)dz - int_(-x)^x 2/(z + 2)dz - int_(-x)^x 1/(z+2) dz`
`int_(-x)^x (z - 1)/(z + 2) dz = int_(-x)^x dz - int_(-x)^x 3/(z + 2)` `dz`
` int_(-x)^x (z - 1)/(z + 2) dz = z|_(-x)^x - 3ln|z + 2||_(-x)^x`
`int_(-x)^x (z - 1)/(z + 2) dz = (x + x) - 3(ln|x+2| - ln|2-x|)`
`int_(-x)^x (z - 1)/(z + 2) dz = 2x - ln|(x+2)/(2-x)|^3`
Hence, evaluating the definite integral yields `int_(-x)^x (z - 1)/(z + 2) dz = 2x - ln|(x+2)/(2-x)|^3.`
Related Questions
- If f is a differentiable function of three variables. Suppose w=f(x-y, y-z, z-x). Show that...
- 1 Educator Answer
- Use the fundamental Theorem of Calculus to find ` d/(dx) int_(-x)^x ((z-1)/(z+2)) dz`
- 1 Educator Answer
- `int_1^18(sqrt(3/z))dz` Evaluate the integral.
- 1 Educator Answer
- Given z = ln(sqrt x^2 + y^2), show that x dz/dx + y dz/dy = 1Calculus of several variables...
- 1 Educator Answer
- `int z^3 e ^ z dz` Evaluate the integral
- 1 Educator Answer