Use a double integral in polar coordinates to find the area of the region described  The region enclosed by the cardioid r=2(sin^2)(theta/2)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to evaluate the double integral, hence, you need to convert the double integral into an iterated integral such that:

`int_0^(2pi) int_(-2(sin^2(theta/2)))^(2(sin^2(theta/2))) r dr d theta`

Since the cardioid function is even yields:

`int_0^(2pi) (2*int_0^(2(sin^2(theta/2))) r dr d theta)`

Evaluating the inner integral, using the fundamental theorem of calculus, yields:

`int_0^(2pi) 2*r^2/2 |_(0)^(2(sin^2(theta/2))) d theta`

Substituting `1 - cos theta`  for `2 sin^2(theta/2)`  yields:

`int_0^(2pi) ((1 - cos theta)^2 - 0^2) d theta`

`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta`

Using the property of linearity of integral yields:

`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = int_0^(2pi) d theta - 2 int_0^(2pi) cos theta d theta + int_0^(2pi) cos^2 theta d theta`

You need to use the following identity such that:

`cos^2 theta = (1 + cos 2 theta)/2`

`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = theta|_0^(2pi) - 2 sin theta|_0^(2pi) + int_0^(2pi) (1 + cos 2 theta)/2 d theta`

`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = theta|_0^(2pi) - 2 sin theta|_0^(2pi) + theta/2|_0^(2pi) + (sin 2 theta)/4|_0^(2pi) `

`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = 2pi - 0 - 2 sin (2pi) + 2 sin 0 + (2pi)/2 - 0/2 + (sin (4pi))/4 - (sin 0)/4`

`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = 3pi`

Hence, evaluating the region enclosed by the given cardioid yields `int_0^(2pi) int_(-2(sin^2(theta/2)))^(2(sin^2(theta/2))) r dr d theta = 3pi`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team