You need to evaluate the double integral, hence, you need to convert the double integral into an iterated integral such that:
`int_0^(2pi) int_(-2(sin^2(theta/2)))^(2(sin^2(theta/2))) r dr d theta`
Since the cardioid function is even yields:
`int_0^(2pi) (2*int_0^(2(sin^2(theta/2))) r dr d theta)`
Evaluating the inner integral, using the fundamental theorem of calculus, yields:
`int_0^(2pi) 2*r^2/2 |_(0)^(2(sin^2(theta/2))) d theta`
Substituting `1 - cos theta` for `2 sin^2(theta/2)` yields:
`int_0^(2pi) ((1 - cos theta)^2 - 0^2) d theta`
`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta`
Using the property of linearity of integral yields:
`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = int_0^(2pi) d theta - 2 int_0^(2pi) cos theta d theta + int_0^(2pi) cos^2 theta d theta`
You need to use the following identity such that:
`cos^2 theta = (1 + cos 2 theta)/2`
`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = theta|_0^(2pi) - 2 sin theta|_0^(2pi) + int_0^(2pi) (1 + cos 2 theta)/2 d theta`
`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = theta|_0^(2pi) - 2 sin theta|_0^(2pi) + theta/2|_0^(2pi) + (sin 2 theta)/4|_0^(2pi) `
`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = 2pi - 0 - 2 sin (2pi) + 2 sin 0 + (2pi)/2 - 0/2 + (sin (4pi))/4 - (sin 0)/4`
`int_0^(2pi) (1 - 2cos theta + cos^2 theta) d theta = 3pi`
Hence, evaluating the region enclosed by the given cardioid yields `int_0^(2pi) int_(-2(sin^2(theta/2)))^(2(sin^2(theta/2))) r dr d theta = 3pi`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.