Use the Definition to find an expression for the area under the graph of fas a limit. Do not evaluate the limit. Use the Definition to find an expression for the area under the graph of fas a limit. Do not evaluate the limit. f(x) = x2+ sqrt(1+2x) , 4 ≤ x ≤ 6 lim n---> infinity Sigma, with i = 1 and n on top

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to evaluate the definite integral of the given funtion to find the area under its graph such that:

`int_1^n (x^2+ sqrt(1+2x)) dx `

You need to use the property of linearity of integrals such that:

`int_1^n (x^2+ sqrt(1+2x)) dx = int_1^n (x^2)dx+ int_1^n sqrt(1+2x)) dx `

`int_1^n (x^2+ sqrt(1+2x)) dx = x^3/3|_1^n + int_1^n sqrt(1+2x)) dx `

You need to use the following substitution to solve `int_1^n sqrt(1+2x)) dx`  such that:

`2x+1 = t => 2dx = dt`

`int sqrt(1+2x)dx = int sqrt t dt/2 `

Converting the square root into a power yields:

`int sqrt t dt/2 = int t^(1/2) dt/2 = (1/2)(t^(1/2+1))/(1/2+1) + c`

`int sqrt t dt/2 = (t^(3/2))/3 + c => int_1^n sqrt(1+2x)dx = (1+2x)^(3/2)/3|_1^n`

`int_1^n (x^2+ sqrt(1+2x)) dx = (n^3 + (1+2n)^(3/2) - 1^3 - (1+2)^(3/2))/3`

`int_1^n (x^2+ sqrt(1+2x)) dx = (n^3 + (1+2n)^(3/2) - 1 - 3sqrt3)/3`

Hence, evaluating the area under the graph, between the limits 1 and n, yields `int_1^n (x^2+ sqrt(1+2x)) dx = (n^3 + (1+2n)^(3/2) - 1 - 3sqrt3)/3.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team