Is the statement true that f(x)< x- (x^3/3), where f(x)=arctg x?  

Expert Answers

An illustration of the letter 'A' in a speech bubbles

There are a couple of ways to evaluate this inequality. One is to graph arctg (x) and x-x^3/3 and note that the two graphs intersect. Thus it is not always true that f(x) < x - x^3/3

A quick way to graph the two functions is to note what arctg (x) and x-x^3/3 do when x = 0 and when x grows very large. arctg (0) = 0, and 0-0^3/3= 0; so the functions intersect at zero. When x gets very large, arctg (x) = 1 (or -1 for -x). On the other hand for large x, -x^3 dominates, and the function approaches infinity. So for x > 0, f(x) > x - x^3/3.

A second quick approach is to note that both sides of the equation have odd functions. But, thanks to the minus sign infront of the -x^3/4, when they intersect the inequality sign must flip. Thus it can't be true that one side is always less than the other side.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team