Trig question If g(x)=cscx+cotx, then g'(pi/6)=

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to find derivative of the function g(x) such that:

`g'(x) = (csc x + cot x)'`

You need to remember that cosecant function is the reverse of sine function and cotangent function is a rational function cot x = cos x/sin x.

`g'(x) = (1/(sin x) + cos x/sin x)'`

`g'(x) = ((1 +cos x)/(sin x))'`

`g'(x) = ((1 +cos x)'*(sin x) - (1 +cos x)*(sin x)')/(sin^2 x)`

`g'(x) = ((-sin x)*(sin x) - (1 +cos x)*(cos x))/(sin^2 x)`

`g'(x) = (-sin^2 x -cos x- cos^2 x)/(sin^2 x)`

You need to remember that `sin^2 x + cos ^2 x = 1` , hence `-sin^2 x- cos ^2 x = -1` => `g'(x) = -(1 + cos x)/(sin^2 x)`

You need to substitute `pi/6 ` for x in equation of derivative such that:

`g'(pi/6) = -(1 + cos (pi/6))/(sin^2 (pi/6))`

`g'(pi/6) = -(1 + sqrt3/2)/(1/4)`

`g'(pi/6) = -4(1 + sqrt3/2)`

`g'(pi/6) = -4 - 2sqrt3`

Hence, evaluating derivative of g(x) at `x = pi/6`  yields `g'(pi/6) = -4 - 2sqrt3` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team