If tangent theta = 1/4 and the terminal point for alpha is in quadrant III, find: a) sec alpha + cos alpha b) sin alpha + csc alpha

Expert Answers

An illustration of the letter 'A' in a speech bubbles

a) You need to remember that the values of sine and cosine functions in the quadrant 3 are negative.

You also should remember that `sec alpha = 1/cos alpha`  such that:

`sec alpha + cos alpha = 1/cos alpha + cos alpha `

You need to bring the terms to a common denominator such that:

`(1 + cos^2 alpha)/cos alpha `

You should use the identity `1 + tan^2 alpha = 1/(cos^2 alpha)`

`cos^2 alpha = 1/(1 + tan^2 alpha)`

`cos^2 alpha = 1/(1 + 1/16) =gt cos^2 alpha = 16/17`

`cos alpha = +-sqrt(16/17)`

You need to remember that since `alpha`  is in quadrant 3, you need to keep only the negative value for `cos alpha`  such that:

`cos alpha = -sqrt(16/17) =gt cos alpha = -4sqrt17/17`

`(1 + cos^2 alpha)/cos alpha = (1 + 16/17)/(-4sqrt17/17) = -33sqrt17/68`

Hence, evaluating `sec alpha + cos alpha`   yields  `sec alpha + cos alpha = -33sqrt17/68.`

b) `sin alpha + csc alpha = sin alpha + 1/sin alpha`

`sin alpha + csc alpha = (sin^2 alpha + 1)/sin alpha`

You need to use the identity `1/(1 + cot^2 alpha) = sin^2 alpha`

You also should use the identity `cot alpha = 1/tan alpha` , hence `cot alpha = 1/(1/4) = 4` .

`sin^2 alpha = 1/(1 + 16) = 1/17`

`sin alpha = +-sqrt(1/17)`

You need to remember that since `alpha`  is in quadrant 3, you need to keep only the negative value for `sin alpha`  such that:

`sin alpha = -sqrt(1/17)`

`sin alpha + csc alpha = (1/17 + 1)/(-sqrt17/17)`

`sin alpha + csc alpha = (18/17)/(-sqrt17/17)`

`sin alpha + csc alpha = -18sqrt17/17`

Hence, evaluating `sec alpha + cos alpha`  yields `sin alpha + csc alpha = -18sqrt17/17.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team