`sum_(n=2)^oo lnn/n^p` Find the positive values of p for which the series converges.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To find the convergence of the series `sum_(n=2)^oo (ln(n))/n^p` where `pgt0` (positive values of `p` ), we may apply integral test.

Integral test is applicable if f is positive, continuous, and decreasing function on an interval and let `a_n=f(x).` Then the infinite series `sum_(n=k)^oo a_n` converges if and only if the improper integral `int_k^oo f(x) dx` converges to a real number. If the integral diverges then the series also diverges.

For the infinte series series `sum_(n=2)^oo (ln(n))/n^p ` , we have:

`a_n =(ln(n))/n^p`

Then, `f(x) =(ln(x))/x^p`

The `f(x)` satisfies the conditions for integral test when `pgt0` . We set-up the improper integral as:

`int_2^oo (ln(x))/x^pdx`

Apply integration by parts: `int u dv = uv - int v du.`

Let: `u=ln(x)` then `du = 1/xdx`

       `dv = 1/x^p dx`

Then , `v = int dv`

              `=int 1/x^p dx `

              `= int x^(-p) dx`

             `= x^(-p+1)/(-p+1)`

The indefinite integral will be:

`int (ln(x))/x^pdx = ln(x)x^(-p+1)/(-p+1)- intx^(-p+1)/(-p+1) *1/x dx`

                    `= ln(x)x^(-p+1)/(-p+1)-1/(-p+1) int (x^(-p)x)/x dx`

                   `= ln(x)x^(-p+1)/(-p+1)-1/(-p+1) intx^(-p) dx `        

                  `= ln(x)x^(-p+1)/(-p+1)-1/(-p+1) *x^(-p+1)/(-p+1)`

                  ` =(ln(x)x^(-p+1))/(-p+1)-x^(-p+1)/(-p+1)^2`




The definite integral will only be finite if `1-p<0 or pgt1` .

Thus, the series  `sum_(n=2)^oo(ln(n))/n^p` converges when `pgt1` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial