`sum_(n=2)^oo 1/(nsqrt(ln(n)))` Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The Integral test is applicable if `f` is positive and decreasing function on infinite interval `[k, oo)` where `kgt= 1` and `a_n=f(x)` . Then the series `sum_(n=k)^oo a_n` converges if and only if the improper integral` int_k^oo f(x) dx ` converges. If the integral diverges then the series also diverges.

For the given series `sum_(n=2)^oo 1/(nsqrt(ln(n)))` , the `a_n =1/(nsqrt(ln(n)))` then applying` a_n=f(x)` , we consider:

`f(x) =1/(xsqrt(ln(x)))` .  

The graph of f(x) is:

As shown on the graph above, the function `f(x)` is positive and decreasing on the interval `[2,oo)` . This implies we may apply the Integral test to confirm the convergence or divergence of the given series.

We may determine the convergence or divergence of the improper integral as:

`int_2^oo 1/(xsqrt(ln(x)))= lim_(t-gtoo)int_2^t 1/(xsqrt(ln(x)))dx`

To determine the indefinite integral of `int_2^t1/(xsqrt(ln(x)))dx` , we may apply u-substitution by letting:

`u = ln(x)` and `du = 1/x dx` . 

The integral becomes: 

`int 1/(xsqrt(ln(x)))dx=int 1/sqrt(ln(x)) *1/x dx`

                        `=int 1/sqrt(u) du`

Apply the radical property: `sqrt(x)= x^(1/2)` and `1/x^m = x^(-m)` .

`int 1/sqrt(u) du=int 1/u^(1/2) du`

                 `=int u^(-1/2) du`

Apply the Power rule for integration: `int x^n dx = x^(n+1)/(n+1)` .

`int u^(-1/2) du =u^(-1/2+1)/(-1/2+1)`


                   ` =u^(1/2)*(2/1)`

                   ` = 2u^(1/2)`       or     `2sqrt(u)`

Plug-in  `u=ln(x)` on `2sqrt(u)` , we get:


Apply the definite integral formula: `F(x)|_a^b = F(b)-F(a)` .

`2sqrt(ln(x))|_2^t =2sqrt(ln(t))-2sqrt(ln(2))`

Applying `int_1^t1/(xsqrt(ln(x)))dx=2sqrt(ln(t))-2sqrt(ln(2))` , we get:

`lim_(t-gtoo)int_1^t 1/(xsqrt(ln(x)))dx=lim_(t-gtoo)[2sqrt(ln(t))-2sqrt(ln(2))]`

                                     `= oo -2sqrt(ln(2))`

                                     ` =oo`

Note: `lim_(t-gtoo)2sqrt(ln(2))=2sqrt(ln(2))` and

`lim_(t-gtoo)2sqrt(ln(t))= 2lim_(t-gtoo)sqrt(ln(t))`

                           ` =2sqrt(lim_(t-gtoo)ln(t))`

                            ` =2sqrt(oo)`

                            ` =oo`

The `lim_(t-gtoo)int_2^t 1/(xsqrt(ln(x)))dx= oo` implies that the integral diverges.

Conclusion: The integral `int_2^oo 1/(xsqrt(ln(x)))`    diverges therefore the series `sum_(n=2)^oo 1/(xsqrt(ln(x)))`  must also diverges. 

Approved by eNotes Editorial Team