`sum_(n=1)^oo ln((n+1)/n)` Determine the convergence or divergence of the series.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To determine if the series `sum_(n=1)^oo ln((n+1)/n)` converges or diverges, we may apply the Direct Comparison Test.

Direct Comparison test is applicable when `sum a_n` and `sum b_n` are both positive series for all n where `a_n lt=b_n` .

If `sum b_n` converges then`sum a_n` converges.

If `sum a_n` diverges so does the `sum b_n` diverges.

For the given series `sum_(n=1)^oo ln((n+1)/n)` , we let `b_n= ln((n+1)/n)` .

  Let `a_n= ln(1/n)` since  `ln(1/n) lt= ln((n+1)/n)` .

To evaluate if the series `sum_(n=1)^oo ln(1/n)` converges or diverges, we may apply Divergence test:

`lim_(n-gtoo) a_n !=0` or does not exist then the series` sum a_n` diverges 

We set-up the limit as:

`lim_(n-gtoo)ln(1/n) =lim_(n-gtoo)ln(n^(-1))`

                         ` = (-1)lim_(n-gtoo) ln(n)`

                         ` = -oo`

With the limit value `L =-oo` , it satisfy `lim_(n-gtoo) a_n !=0` .``

Thus, the series `sum_(n=1)^oo ln(1/n)` diverges      

Conclusion based from Direct Comparison test:

The series`sum_(n=1)^oo a_n = sum_(n=1)^oo ln(1/n)`  diverges then it follows that `sum_(n=1)^oo b_n =sum_(n=1)^oo ln((n+1)/n)` also diverges.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial