`sum_(n=1)^oo 2(-1/2)^n` Verify that the infinite series converges

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To verify if the given infinite series: `sum_(n=1)^oo 2(-1/2)^n` converges, recall that infinite series converge to a single finite value S  if the limit of the partial sum `S_n ` as n approaches ` oo` converges to `S` . We follow it in a formula:

`lim_(n-gtoo) S_n=sum_(n=1)^oo a_n = S` .

To evaluate the  `sum_(n=1)^oo 2(-1/2)^n` , we apply the Law of exponent : `x^(n+m) = x^n*x^m` .

Then, `(-1/2)^n =(-1/2)^(n -1+1)`

                        `=(-1/2)^(n -1)*(-1/2)^1 `

                       ` = (-1/2)^(n -1)*(-1/2)`

Plug-in `(-1/2)^n =(-1/2)^(n -1)*(-1/2)` , we get:

`sum_(n=1)^oo 2(-1/2)^n =sum_(n=1)^oo 2*(-1/2)^(n -1)*(-1/2)`

                         ` =sum_(n=1)^oo -1*(-1/2)^(n -1)`

By comparing given infinite series  `sum_(n=1)^oo -1*(-1/2)^(n -1)` with the geometric series form `sum_(n=1)^oo a*r^(n-1)` , we determine the corresponding values as: 

`a=-1 ` and `r= -1/2` .

The convergence test for the geometric series follows the conditions:

a) If `|r|lt1`  or `-1 ltrlt 1` then the geometric series converges to `sum_(n=0)^oo a*r^n =sum_(n=1)^oo a*r^(n-1)= a/(1-r).`

b) If `|r|gt=1` then the geometric series diverges.

The `r=-1/2` falls within the condition` |r|lt1` since `|-1/2|lt1` or `|-0.5| lt1` .

Therefore, the series converges.

 

By applying the formula: `sum_(n=1)^oo a*r^(n-1)= a/(1-r)` , we determine that the given geometric series will converge to a value:

 

`sum_(n=1)^oo2(-1/2)^n=sum_(n=1)^oo -1*(-1/2)^(n -1)`

                           ` =(-1)/(1-(-1/2))`

                            ` =(-1)/(1+1/2)`

                           ` =(-1)/(2/2+1/2)`

                            ` =(-1)/(3/2)`

                            ` =(-1)*(2/3)`

                            ` = -2/3 or -0.67 ` (approximated value)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial