`sum_(n=1)^oo (1/n-1/n^2)^n` Use the Root Test to determine the convergence or divergence of the series. To apply Root test on a series `sum a_n` , we determine the limit as:

`lim_(n-gtoo) root(n)(|a_n|)= L`

or

`lim_(n-gtoo) |a_n|^(1/n)= L`

a) `Llt1` then the series is absolutely convergent.

b) `Lgt1` then the series is divergent.

c) `L=1` or does not exist ...

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

To apply Root test on a series `sum a_n` , we determine the limit as:

`lim_(n-gtoo) root(n)(|a_n|)= L`

or

`lim_(n-gtoo) |a_n|^(1/n)= L`

a) `Llt1` then the series is absolutely convergent.

b) `Lgt1` then the series is divergent.

c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.

In order to apply Root Test in determining the convergence or divergence of the series `sum_(n=1)^oo (1/n -1/n^2)^n` , we let: `a_n =(1/n -1/n^2)^n.`

We set-up the limit as:

`lim_(n-gtoo) |(1/n -1/n^2)^n|^(1/n) =lim_(n-gtoo) ((1/n -1/n^2)^n)^(1/n) `

Apply the Law of Exponents:`(x^n)^m= x^(n*m)` .

`lim_(n-gtoo) ((1/n -1/n^2)^n)^(1/n) =lim_(n-gtoo) (1/n -1/n^2)^(n*1/n)`

`=lim_(n-gtoo) (1/n -1/n^2)^(n/n)`

`=lim_(n-gtoo) (1/n -1/n^2)^1`

`=lim_(n-gtoo) (1/n -1/n^2)`

Evaluate the limit by applying the limit property: `lim_(x-gta)[(f(x))-(g(x))] =lim_(x-gta) f(x) -lim_(x-gta) g(x)` .

`lim_(n-gtoo) (1/n -1/n^2)=lim_(n-gtoo) 1/n -lim_(n-gtoo) 1/n^2`

` = 1/oo - 1/oo^2`

` = 1/oo - 1/oo`

` = 0 -0`

` = 0`

The limit value `L=0` satisfies the condition: `L lt1` since `0lt1` .

Conclusion: The series `sum_(n=1)^oo (1/n -1/n^2)^n` is absolutely convergent.

Approved by eNotes Editorial Team