`sum_(n=1)^oo 1/(2n+3)^3` Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`sum_(n=1)^oo1/(2n+3)^3`

For the integral test, if f is positive, continuous and decreasing for `x>=1` and `a_n=f(n)` , then `sum_(n=1)^ooa_n` and `int_1^oof(x)dx` either both converge or diverge.

Now, `f(x)=1/(2x+3)^3`

Now function is positive and continuous.

Let's determine whether f(x) is decreasing, by finding its derivative `f'(x)`

`f(x)=(2x+3)^(-3)`

`f'(x)=-3(2x+3)^(-3-1)d/dx(2x+3)`

`f'(x)=-3(2x+3)^(-4)(2)`

`f'(x)=-6/(2x+3)^4`

`f'(x)<0` , so the function is decreasing

Because f(x) satisfies the conditions for the integral test, we can apply integral test.

`int_1^oo1/(2x+3)^3dx`

`=[1/2(2x+3)^(-3+1)/(-3+1)]_1^oo`

`=[1/-4(1/(2x+3)^2)]_1^oo`

`=-1/4[1/(2*oo+3)^2-1/(2*1+3)^2]`

`=-1/4[0-1/5^2]`

`=-1/4(-1/25)`

`=1/100`

So f(x) converges.

Therefore, `sum_(n=1)^oo1/(2n+3)^2` converges.

Approved by eNotes Editorial Team