For the power series `sum_(n=0)^oo n!(x/2)^n,` we may apply Ratio Test.

In **Ratio test**, we determine the limit as:

`lim_(n-gtoo)|a_(n+1)/a_n| = L`

or

`lim_(n-gtoo)|a_(n+1)*1/a_n| = L`

Then ,we follow the conditions:

a) `L lt1` then the series converges absolutely

b) `Lgt1` then the series diverges

c) `L=1 ` or does not exist then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.

The given power series `sum_(n=0)^oo n!(x/2)^n` has:

`a_n =n!(x/2)^n`

Then,

`1/a_n=1/(n!)(2/x)^n`

` =1/(n!)(2^n/x^n)`

` =2^n/((n!)x^n)`

`a_(n+1) =(n+1)!(x/2)^(n+1)`

` = (n+1)(n!) x^(n+1)/2^(n+1)`

` = (n+1)(n!)(x^n*x)/(2^n*2)`

` =((n+1)(n!)*x^n*x)/(2^n*2))`

Applying the Ratio test on the power series, we set-up the limit as:

`lim_(n-gtoo) |((n+1)(n!)*x^n*x)/(2^n*2)*2^n/((n!)x^n)|`

Cancel out common factors: `x^n,` `n!` , and `2^n` .

`lim_(n-gtoo) |((n+1)x)/2|`

Evaluate the limit.

`lim_(n-gtoo) |((n+1)*x)/2| = |x/2|lim_(n-gtoo) |n+1|`

` = |x/2|* oo`

` = oo `

The limit value `L= oo ` satisfies `Lgt 1` for all `x.`

Therefore, the power series `sum_(n=0)^oo n!(x/2)^n` **diverges for all** `x` .

There is** no interval for convergence.**

Note: The *radius of convergence* is `0` . The `x=0` satisfy the convergence at points where `n!(x/2)^n=0` .