`sum_(n=0)^oo 2^n/(n!)` Use the Root Test to determine the convergence or divergence of the series.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

It is usually easier to use ratio test on these types of series that contain factorials. However, we can also use root test if we rewrite factorial using exponentials. This can be accomplished using Stirling's approximation

`n! approx sqrt(2pi n)(n/e)^n`

The reason why we can use this approximation is because...

Read
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

It is usually easier to use ratio test on these types of series that contain factorials. However, we can also use root test if we rewrite factorial using exponentials. This can be accomplished using Stirling's approximation

`n! approx sqrt(2pi n)(n/e)^n`

The reason why we can use this approximation is because it becomes more precise for greater values of `n,` in fact the ratio of the left and right hand side of the approximation converges to 1 as `n` tends to infinity.

`lim_(n to infty)root(n)(2^n/n!) =lim_(n to infty) root(n)(2^n/(sqrt(2pi n)(n/e)^n))=lim_(n to infty)2/(root(n)(sqrt(2pi n))n/e)=`

In order to calculate `lim_(n to infty) root(n)(sqrt(2pi n))` we need to use the following two facts:

`lim_(n to infty) root(n)(c)=1,` `c in RR` and `lim_(n to infty)root(n)(n^p)=1,` `p in RR.`

                                                                                                                    Applying this to our limit yields

`lim_(n to infty)2/(root(n)(sqrt(2pi n))n/e)=lim_(n to infty)2/(n/e)=lim_(n to infty)(2e)/n=(2e)/infty=0`

Since the value of the limit is less than 1, the series is convergent. 

Approved by eNotes Editorial Team