`sum_(n=0)^oo (-1)^n*e^(-n^2)` Determine whether the series converges absolutely or conditionally, or diverges.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To apply Root test on a series sum a_n, we determine the limit as:

`lim_(n-gtoo) root(n)(|a_n|)= L `

or                         

`lim_(n-gtoo) |a_n|^(1/n)= L `

Then, we follow the conditions:

a) `Llt1` then the series is absolutely convergent.

b) `Lgt1` then the series is divergent.

c) ` L=1` or  does not...

Unlock
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

To apply Root test on a series sum a_n, we determine the limit as:

`lim_(n-gtoo) root(n)(|a_n|)= L `

or                         

`lim_(n-gtoo) |a_n|^(1/n)= L `

Then, we follow the conditions:

a) `Llt1` then the series is absolutely convergent.

b) `Lgt1` then the series is divergent.

c) ` L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.

In order to apply Root Test in determining the convergence or divergence of the series =`sum_(n0)^oo (-1)^n*e^(-n^2)` , we let:

`a_n=(-1)^n*e^(-n^2)`

We set-up the limit as: 

`lim_(n-gtoo) |(-1)^n*e^(-n^2)|^(1/n) =lim_(n-gtoo) |(-1)^n|^(1/n)*|e^(-n^2)|^(1/n)`

                                         ` =lim_(n-gtoo) 1 *(e^(-n^2))^(1/n) `

                                         ` =lim_(n-gtoo) (e^(-n^2))^(1/n)`

Apply the Law of Exponents:  `(x^n)^m= x^(n*m)` and `x^(-n)= 1/x^n` .

`lim_(n-gtoo) (e^(-n^2))^(1/n) =lim_(n-gtoo)e^(-n^2*1/n)`

                              `=lim_(n-gtoo)e^(-n^2/n)`

                              `=lim_(n-gtoo)e^(-n)`

                              ` =lim_(n-gtoo)1/e^n`

Evaluate the limit.

`lim_(n-gtoo)1/e^n = 1/e^oo`

                  ` = 1/oo`

                  ` =0`

The limit value `L=0` satisfies the condition: `L lt1` since `0lt1` .

 Therefore, the series `sum_(n=0)^oo(-1)^n*e^(-n^2) ` is absolutely convergent.

Approved by eNotes Editorial Team