# state the transformations: f(x)= -3(x-3)^2+4 We are asked to state the transformations in the following quadratic equation: f(x) = -3(x-3)^2 + 4.

This is an equation for a parabola.

The parent graph of this equation is f(x) = x^ 2, where the vertex of a parabola is at (0,0) and the parabola opens upward.

The...

## See This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

We are asked to state the transformations in the following quadratic equation: f(x) = -3(x-3)^2 + 4.

This is an equation for a parabola.

The parent graph of this equation is f(x) = x^ 2, where the vertex of a parabola is at (0,0) and the parabola opens upward.

The equation in this problem is in the form of f(x) = a(x-h)^2 + k.

The transformed vertex is given by (h,k) in the equation.

The vertex of the parabola in the given problem is at (3,4).

The parabola opens downward because the "a" value in the transformed equation is negative.

Since the a value is a whole number the parabola will "shrink," meaning that its graph will be narrower than the parent graph.

Posted on