We are asked to state the transformations in the following quadratic equation: f(x) = -3(x-3)^2 + 4.

This is an equation for a parabola.

The parent graph of this equation is f(x) = x^ 2, where the vertex of a parabola is at (0,0) and the parabola opens upward.

The...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

We are asked to state the transformations in the following quadratic equation: f(x) = -3(x-3)^2 + 4.

This is an equation for a parabola.

The parent graph of this equation is f(x) = x^ 2, where the vertex of a parabola is at (0,0) and the parabola opens upward.

The equation in this problem is in the form of f(x) = a(x-h)^2 + k.

The transformed vertex is given by (h,k) in the equation.

**The vertex of the parabola in the given problem is at (3,4).**

**The parabola opens downward because the "a" value in the transformed equation is negative. **

**Since the a value is a whole number the parabola will "shrink," meaning that its graph will be narrower than the parent graph.**