`sqrt(x + 1) = x^2-x`
Set the left side equal to zero.
`0=x^2-x-sqrt(x - 1)`
To solve using Newton's method, apply the formula:
`x_(n+1)=x_n-(f(x_n))/(f'(x_n))`
Let the function f(x) be:
`f(x)=x^2-x-sqrt(x+1)`
Then, take its derivative.
`f'(x)=2x-1-1/(2sqrt(x+1))`
Plug-in f(x) and f'(x) to the formula of Newton's method.
`x_(n+1)=x_n - (x_n^2-x_n-sqrt(x_n+1))/(2x_n-1-1/(2sqrt(x_n+1)))`
And that simplifies to:
`x_(n+1) = x_n - (2x_n^2sqrt(x_n+1)-2x_nsqrt(x_n+1)-2(x_n+1))/(4x_nsqrt(x_n+1) - 2sqrt(x_n+1)-1)`
For the initial value of x, let's refer to the graph of f(x). (See attached figure.)
Notice that there are two values of x in which f(x)=0. The roots of the f(x) are near x=-0.5 and x=2.
To approximate the value of the first root to six decimal places, plug-in the initial value x_1=-0.5 to x_(x+1).
`x_0=-0.5`
`x_2= x_1 - (2x_1^2sqrt(x_1+1)-2x_1sqrt(x_1+1)-2(x_1+1))/(4x_1sqrt(x_1+1) - 2sqrt(x_1+1)-1)=-0.4841553280`
`x_3= x_2 - (2x_2^2sqrt(x_2+1)-2x_2sqrt(x_2+1)-2(x_2+1))/(4x_2sqrt(x_2+1) - 2sqrt(x_2+1)-1)=-0.4840283103`
`x_4= x_3 - (2x_3^2sqrt(x_3+1)-2x_3sqrt(x_3+1)-2(x_3+1))/(4x_3sqrt(x_3+1) - 2sqrt(x_3+1)-1)=-0.4840283022`
Notice that two approximation have now the same six decimal places. Thus, one of the approximate solution of the equation is `x=-0.484028` .
Next, to approximate the second root to six decimal places, plug-in the initial value x_1=2 to x_(n+1).
x_1=2
`x_2= x_1 - (2x_1^2sqrt(x_1+1)-2x_1sqrt(x_1+1)-2(x_1+1))/(4x_1sqrt(x_1+1) - 2sqrt(x_1+1)-1)=1.901174073`
`x_3= x_2 - (2x_2^2sqrt(x_2+1)-2x_2sqrt(x_2+1)-2(x_2+1))/(4x_2sqrt(x_2+1) - 2sqrt(x_2+1)-1)=1.897185922`
`x_4= x_3 - (2x_3^2sqrt(x_3+1)-2x_3sqrt(x_3+1)-2(x_3+1))/(4x_3sqrt(x_3+1) - 2sqrt(x_3+1)-1)=1.897179401`
`x_5= x_4 - (2x_4^2sqrt(x_4+1)-2x_4sqrt(x_4+1)-2(x_4+1))/(4x_4sqrt(x_4+1) - 2sqrt(x_4+1)-1)=1.897179401`
Notice that the two approximation have the same six decimal places. Thus, the other approximate solution is `x=1.897179` .
Therefore, the approximate solution (to six decimal places) of `sqrt(x+1)=x^2-x` are` x={-0.484028,1.897179}` .
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.