`sqrt(1-4x^2)y' = x` Find the general solution of the differential equation

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To be able to evaluate the problem: `sqrt(1-4x^2)y'=x` , we express in a form of `y'=f(x)` .

 To do this, we divide both sides by `sqrt(1-4x^2)` .

`y'=x/sqrt(1-4x^2)`

The general solution of a differential equation in a form of `y'=f(x)` can

 be evaluated using direct integration. We can denote y' as `(dy)/(dx)` .

Then, 

`y'=x/sqrt(1-4x^2)`  becomes `(dy)/(dx)=x/sqrt(1-4x^2)`

This is the same as  `(dy)=x/sqrt(1-4x^2) dx`

Apply direct integration on both sides:

For the left side, we have: `int (dy)=y`

 For the right side, we apply u-substitution using `u =1-4x^2` then `du=-8x dx` or  `(du)/(-8)=xdx` .

`int x/sqrt(1-4x^2) dx = int1/sqrt(u) *(du)/(-8)`

Applying basic integration property: `int c f(x) dx = c int f(x) dx` .

`int1/sqrt(u) *(du)/(-8) = -1/8int1/sqrt(u)du`

Applying Law of Exponents: `sqrt(x)= x^1/2` and  `1/x^n = x^-n` :

`-1/8int1/sqrt(u)du=-1/8int1/u^(1/2)du`

                     ` =-1/8int u^(-1/2)du`

Applying the Power Rule for integration: `int x^n= x^(n+1)/(n+1)+C` .

`-1/8int u^(-1/2)du =-1/8 u^(-1/2+1)/(-1/2+1)+C`

                      ` =-1/8 u^(1/2)/(1/2)+C`

                      ` =-1/8 u^(1/2)*(2/1)+C`

                      `= -2/8 u^(1/2)+C`

                      ` = -1/4u^(1/2)+C or -1/4sqrt(u)+C`

Plug-in `u = 1-4x^2` in `-1/4u^(1/2)` , we get:

`int1/sqrt(u) *(du)/(-8)=-1/4sqrt(1-4x^2)+C`

 

Combining the results, we get the general solution for differential equation

`( sqrt(1-4x^2)y'=x)`

 as:

`y= -1/4sqrt(1-4x^2)+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial