# Solve for x to 3 decimal places: 3^2x= 4^(1-3x)

*print*Print*list*Cite

### 2 Answers

Solve for x to three decimal places: `3^(2x)=4^(1-3x)` :

Take the logarithm of both sides:

`ln(3^(2x))=ln(4^(1-3x))` Now use `lna^x=xlna` :

`=> 2xln3=(1-3x)ln4`

`=>2ln(3)x+3ln(4)x=ln4`

`=>x(2ln3+3ln4)=ln4`

`=> x=(ln4)/(2ln3+3ln4)`

`=>x~~0.218104292`

------------------------------------------------------------------

The solution is `x~~0.218`

-----------------------------------------------------------------

`3^(2*0.218)=3^(.436)~~1.614450995`

`4^(1-3*.218)=4^(.346)~~1.615521555`

### User Comments

Hi, should x be to the power of?can you explain it in a simpler form