1. x^-3 +x^-3/2 = 2
assume x^-3=y
\==> y+y^1/2 =2
==> y + y^1/2 -2=0
==> (y^1/2 +2)(y^1/2 -1)=0
==> y^1/2= -2 which is impossible
==> OR y^1/2= 1 ==> y=1 ==> x= 1
2. 6(4^x + 9^x)= 6^x(9+6)
==> 6(4^x +9^x) = 6^x (13)
Divide by 6(6^x)
==> (4^x + 9^x)/6^x= 13/6
==> 4^x/6^x + 9^x/6^x = 13/6
==> (2/3)^x + (3/2)^x = 13/6
Now assume that (2/3)^x =y
==> y+ 1/y = 13/9
==> y^2 + 1 = (13/9)y
==> y^2-(13/9)y +1 =0
==> [y-(3/2)][y-(2/3)]=0
==> y = 3/2 ==> x= -1
OR y= 2/3 ==> x=1
We’ll help your grades soar
Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.
- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support
Already a member? Log in here.
Are you a teacher? Sign up now