Solve for x 1. `log_3(x)^3=(log_3(x))^2` And... 2. `log_2(x^4)=(log_2(x))^2`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We will use the following property of logarithms (logarithm of a power)

`log_a b^n=n log_a b`                                                        (1)

1.

`log_3 x^3=(log_3 x)^2`

Now by using (1) on the left hand side we get

`3log_3x=(log_3 x)^2`

Now we make substitution `t=log_3x`

`3t=t^2`

`t^2-3t=0`

`t(t-3)=0`

From the above line we have 2 solutions `t_1=0` and `t_2=3`. Now we return to our substitution by putting `t_1` and `t_2` instead of `t`.

`0=log_3x_1`

`3^0=x_1`

`x_1=1`  <-- First solution

`3=log_3 x_2`

`3^3=x_2`

`x_2=27`  <-- Second solution

2.

This is very similar to previous equation

`log_2 x^4=(log_2x)^2`

Again we use (1) to get

`4log_2x=(log_2x)^2`

Substitution `t=log_2x`

`4t=t^2`

`t^2-4t=0`

`t(t-4)=0=> t_1=0,\ t_2=4 `

`0=log_2x_1`

`2^0=x_1=>x_1=1`  <--First solution

`4=log_2x_2`

`2^4=x_2=> x_2=16` <--Second solution

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team