**1. ** 4 cos²(2x) - 3 = 0

cos²(2x) = 3/4

cos(2x) = ± √(3/4) = ±√3/2

Remember, cos(Θ) = ±√3/2 when Θ = 30°, 150°

So, 2x = 30° and 2x = 150°

**x = 15° and x = 75°**

both meet the criterion 0 ≤ x ≤ 90

**2. **2 sin²(x) - sin(x) = 0

sin(x) * (2 sin(x) - 1) = 0

So either sin(x) = 0 or 2sin(x) - 1 = 0

sin(x) = 0 when x = 0° or 180°

2sin(x) - 1 = 0 --> sin(x) =1/2

sin(x) = 1/2 when x = 30° or x = 150°

To satisfy the criterion 0 ≤ x ≤ 90,

**x = 0° or 30° **

Posted on

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now