Solve using Gauss-Jordan elimination. 2X1 + 6X2 - 32X3 = 26 4X1 + 3X2 - 19X3 = 7 X1 + X2 - 6X3 = 3

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have to solve the following system of equations using the Gauss-Jordon elimination method.

2X1 + 6X2 - 32X3 = 26 ...(1)

4X1 + 3X2 - 19X3 = 7 ...(2)

X1 + X2 - 6X3 = 3 ...(3)

There are three variables X1, X2 and X3 and three equations. We get the matrix:

2...6...-32...|...26

4...3...-19...|...7

1...1...-6.....|...3

Divide the first row by 2

1...3...-16...|...13

4...3...-19...|...7

1...1...-6.....|...3

Subtract 4 times row 1 from row 2

1....3...-16...|...13

0...-9....45...|...-45

1...1...-6.....|...3

Subtract row 1 from row 3

1....3...-16...|...13

0...-9....45...|...-45

0...-2...10....|...-10

Divide row 2 by -9

1....3...-16...|...13

0....1....-5....|...-5

0...-2...10....|...-10

Adding 2 times row 2 to row 3 we find that the third row has all zero terms. This shows that the system of equations is dependent.

The system of equations is dependent and therefore there is no unique solution.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team