solve this equation using gaussian or gauss-jordan elimination 4x+8y-z=10 3x-8y+9z=14 7x+6y+5z=0

Expert Answers info

mathsworkmusic eNotes educator | Certified Educator

calendarEducator since 2012

write511 answers

starTop subjects are Math, Science, and Business

Write the three equations as an augmented matrix:

4  8 -1 |  10

3 -8  9 |  14

7  6  5 |   0

The result of using gaussian elimination on this matrix will be an augmented matrix in echelon form:

1  a  b |  c        or   1  a  b |  c      

0  1  d |  e              0  0  1 |  d          

0  0  1 |  f               0  0  0 |  e

         

First multiply row 1 by 1/4:

1   2  -1/4 | 5/2

3  -8   9    | 14

7   6   5    |  0

Now take 3*row 1 from row 2 and 7*row 1 from row 3:

1   2  -1/4   |   5/2

0 -14  39/4  |  13/2

0 -8    27/4  |  -35/2

Now multiply row 2 by -1/14:

1   2  -1/4    |   5/2

0   1  -39/56 |  -13/28

0  -8   27/4  |   -35/2

Now add 8*row 2 to row 3:

1   2  -1/4      |   5/2

0   1  -39/56   |  -13/28

0   0   33/28   |  -297/14

Finally multiply row 3 by 28/33

1   2  -1/4    |    5/2

0   1  -39/56 |  -13/28

0   0   1       |  -18

 

Gauss-jordan elimination will result in the identity matrix on the left of the augmented matrix.

Add 39/56*row 3 to row 2 and 1/4*row 3 to row 1:

1   2   0   |  -2

0   1   0   |  -13

0   0   1   |  -18

Finally take 2*row 2 from row 1:

1   0   0   |   24

0   1   0   |  -13

0   0   1   |  -18

Therefore the solution to the system of equations is

`x = 24`,  `y = -13`   and `z = -18`

 

check Approved by eNotes Editorial
sciencesolve eNotes educator | Certified Educator

calendarEducator since 2011

write5,349 answers

starTop subjects are Math, Science, and Business

You need to use gaussian elimination, hence, you need to convert the original form of the system to a triangular form.

You need to eliminate the variable x from the first and second equations and then, from the first and the third equations such that:

`{(4x+8y-z=10|*(-3)), (3x-8y+9z=14|*4):}` `=gt{(-12x-24y+3z=-30),(12x-32y+36z=56):}`

Adding the equations yields:

`-56y + 39z = 26`

Considering the first and the third equations yields:

`{(4x+8y-z=10|*(7)), (7x+6y+5z=0|*(-4)):}` `=>{(28x+56y-7z=70),(-28x-24y-20z=0):}`

Adding the equations yields:

`32y - 27z = 70`

You need to use the equations -`56y + 39z = 26`  and `32y - 27z = 70`  to eliminate y such that:

`{(-56y + 39z = 26|*4),(32y - 27z = 70|*7):}=gt` `{(-224y + 156z = 104),(224y - 189z = 490):}`

`-33z = 594 => z = -18`

Substituting -18 for z in equation `32y - 27z = 70`  yields:

`32y - 27(-18)= 70 => 32y =-416 => y = -13`

Substituting -18 for z and -13 for y in equation `4x+8y-z=10`  yields:

`4x-104+18=10 => 4x=96 => x = 24`

Hence, evaluating the solution to the given system, using gaussian elimination, yields `x = 24 , y = -13 , z = -18` .

check Approved by eNotes Editorial

Unlock This Answer Now