# Solve the integral integrate of (cos5x)/(3+sin5x) dx

*print*Print*list*Cite

### 2 Answers

`int (cos5x)/(3+sin5x)dx`

`= 1/5int(5cos5x)/(3+sin5x)dx`

`= 1/5ln(3+sin5x)+C` where C is constant.

`int (cos5x)/(3+sin5x)dx = 1/5ln(3+sin5x)+C `

**Sources:**

You should use substitution to solve the integral such that:

`3 + sin 5x = t => 5cos 5x dx = dt => cos 5x dx = (dt)/5`

Changing the variable yields:

`int (cos 5x)/(3 + sin 5x) dx = int ((dt)/5)/t`

`int ((dt)/5)/t = (1/5)int (dt)/t = (1/5)ln|t| + c`

Substituting back `3 + sin 5x` for `t` yields:

`int (cos 5x)/(3 + sin 5x) dx = ln |3 + sin 5x| + c`

Since -`1 =< sin 5x =< 1 => 3 + sin 5x >=0 => |3 + sin 5x| = 3 + sin 5x`

**Hence, evaluating the given integral using substitution yields `int (cos 5x)/(3 + sin 5x) dx = ln (3 + sin 5x) + c.` **