Solve the following simultaneous equations. x – 2y = 6 , x + 2y = 8  

Expert Answers info

hala718 eNotes educator | Certified Educator

calendarEducator since 2008

write3,662 answers

starTop subjects are Math, Science, and Social Sciences

x - 2y = 6.............(1)

x + 2y = 8............(2)

We will solve using the elimination method.

We will add (1) + (2).

==> 2x = 14

Now we will divide bu 2.

==> x = 7

Now we will substitute into (1) to determine y.

==> x - 2y = 6

===> 7 - 2y = 6

==> -2y = -1

==> y= 1/2

Then the answer is the pair ( 7, 1/2)

check Approved by eNotes Editorial
justaguide eNotes educator | Certified Educator

calendarEducator since 2010

write12,544 answers

starTop subjects are Math, Science, and Business

We have to solve the following set of simultaneous equations:

x - 2y = 6 ...(1)

x + 2y = 8 ...(2)

(2) - (1)

=> x + 2y - x + 2y = 8 - 6

=> 4y = 2

=> y = 2/4

=> y = 1/2

substitute in (1)

x - 2y = 6

=> x = 6 + 2y

=> x = 6 + 2*(1/2)

=> x = 6 + 1

=> x = 7

We get x = 7 and y = 1/2

check Approved by eNotes Editorial

Wiggin42 | Student

(1) x - 2y = 6
(2) x + 2y = 8

(1) + (2)

2x = 14 (This method is called elimination since we eliminated one of the variables by manipulating the equations.)

Now its single variable and you can solve for x. Plug this into one of the other equations and solve for y.

check Approved by eNotes Editorial
giorgiana1976 | Student

We can solve the system using substitution method, also:

We'll re-write the first equation:

x = 6+2y (1)

We'll substitute (1) in the 2nd equation:

6+2y+2y = 8

We'll combine like terms and we'll isolate y to the left side:

4y=8-6

4y=2

y=1/2

We'll substitute y in (1):

x = 6+2/2

x = 6+1

x = 7

The solution of the system is the pair of coordinates: (7 ; 1/2).

check Approved by eNotes Editorial