a) `e^(4x) + 4e^(2x) - 12 = 0 `
`==gt (e^(2x))^2 + 4e^(2x) - 12 = 0`
Let `e^(2x)= u `
`==> u^2 + 4u -12 = 0`
Now we will factor.
`==gt (u+6)(u-2) = 0 `
`==gt u= -6 ==gt e^(2x)= -6 ==gtx= phi`
`==gt u= 2 ==gt e^(2x)...
See
This Answer NowStart your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.
Already a member? Log in here.
a) `e^(4x) + 4e^(2x) - 12 = 0 `
`==gt (e^(2x))^2 + 4e^(2x) - 12 = 0`
Let `e^(2x)= u `
`==> u^2 + 4u -12 = 0`
Now we will factor.
`==gt (u+6)(u-2) = 0 `
`==gt u= -6 ==gt e^(2x)= -6 ==gtx= phi`
`==gt u= 2 ==gt e^(2x) = 2==gt 2x = ln 2==gt x = ln2/2 ~~0.35`
``
b) `log_2 (log_3 x) = 4`
`==> log_3 x = 2^4`
`=> log_3 x = 16`
`==> x = 3^16 `
``
``