Solve the equation `sin(x/2) + cos(x) - 1 = 0.`
- print Print
- list Cite
Expert Answers
calendarEducator since 2015
write996 answers
starTop subjects are Math and Science
Hello!
I suppose that "sinx/2+cosx-1=0" means "sin(x/2)+cos(x)-1=0" (it can also mean "(sinx)/2+cos(x)-1=0" and "sin(x/2)+cos(x-1)=0").
To solve this equation, recall the double angle formula `cos(2a) = 1 - 2sin^2(a),` and apply it to `cos(x):` `cos(x) = 1 - 2sin^2(x/2).` This way our equation becomes
`sin(x/2) + (1 - 2sin^2(x/2)) - 1 = 0,` or `sin(x/2) - 2sin^2(x/2) = 0,` or `sin(x/2)(1 - 2sin(x/2)) = 0.`
The product is zero means at least one of factors is zero, i.e. `sin(x/2) = 0` or `sin(x/2) = 1/2.` These equations are well-known and their solutions are
`x/2 = k pi, or x = 2k pi,`
`x/2 = pi/6 + 2k pi, or x = pi/3 + 4k pi,`
`x/2 = (5pi)/6 + 2k pi, or x = (5pi)/3 + 4k pi,`
where `k` is any integer.
At `[0, 4pi],` which is a period of `sin(x/2)+cos(x)-1,` the solutions are `0,` `pi/3,` `(5pi)/3,` `2pi` and `4pi.`
Related Questions
- Solve the equation : 2*sin^2 x + cos x - 1 = 0
- 1 Educator Answer
- Solve for x, 0°≤x≤90° 1. 4 cos^2 2x-3=0 2. 2 sin^2 x - sin x = 0
- 1 Educator Answer
- Solve the trig equation: cos 3x - cos x + sin 2x = 0 for (0 < x < 2pi)
- 2 Educator Answers
- cos x-sin 3x-cos 2x = 0
- 1 Educator Answer
- sin 2x + 2 cos ^2 x = 0
- 1 Educator Answer