Solve the equation. `5((x+2)/(x-2))^2 - 2((x+2)/(x-2)) - 3 = 0` Hint: Use `u = (x+2)/(x-2)` and solve for `x` .  Enter the solutions separated by commas. 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`5((x+2)/(x-2))^2-2((x+2)/(x-2))-3=0`

Substitution `u=(x+2)/(x-2)`

`5u^2-2u-3=0`

Now you use the formula for solution of quadratic equation

`x_(1,2)=(-b pm sqrt(b^2-4ac))/(2a)` where `a,b` and `c` are coefficients of the equation. 

`u_(1,2)=(2pmsqrt(4+60))/(-4)=(2pm8)/(-4)`

`u_1=-5/2,` `u_2=3/2`

Now we put `u_1` back in our substitution

`-5/4=(x+2)/(x-2)`  

Multiply whole equation by `4(x-2)`

`-5(x-2)=4(x+2)`

`-5x+10=4x+8`

`-9x=-2`

`x=2/9`

Now we put `u_2` back into our substitution. ` `

`3/2=(x+2)/(x-2)`

...

Unlock
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

`5((x+2)/(x-2))^2-2((x+2)/(x-2))-3=0`

Substitution `u=(x+2)/(x-2)`

`5u^2-2u-3=0`

Now you use the formula for solution of quadratic equation

`x_(1,2)=(-b pm sqrt(b^2-4ac))/(2a)` where `a,b` and `c` are coefficients of the equation. 

`u_(1,2)=(2pmsqrt(4+60))/(-4)=(2pm8)/(-4)`

`u_1=-5/2,` `u_2=3/2`

Now we put `u_1` back in our substitution

`-5/4=(x+2)/(x-2)`  

Multiply whole equation by `4(x-2)`

`-5(x-2)=4(x+2)`

`-5x+10=4x+8`

`-9x=-2`

`x=2/9`

Now we put `u_2` back into our substitution. ` `

`3/2=(x+2)/(x-2)`

Multiply whole equation by `2(x-2)`

`3(x-2)=2(x+2)`

`3x-6=2x+4`

`x=10`

Hence your solutions are `x_1=2/9`  , `x_2=10.`  

Approved by eNotes Editorial Team