Solve equation 2sin^2(3x)+ cos ^2(3x)+sin3x=1
- print Print
- list Cite
Expert Answers
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You need to use Pythagorean identity to write the equation in terms of `sin 3x` , such that:
`cos^2 (3x) = 1 - sin^2 (3x)`
Replacing `1 - sin^2 (3x)` for `cos^2 (3x)` yields:
`2sin^2 (3x) + 1 - sin^2 (3x) + sin (3x) = 1`
`sin^2 (3x) + 1 + sin (3x) - 1 = 0`
Reducing duplicate terms yields:
`sin^2 (3x) + sin (3x) = 0`
Factoring out `sin (3x)` yields:
`(sin (3x))(sin (3x) + 1) = 0`
Using the zero product rule, yields:
`{(sin (3x) = 0),(sin (3x) + 1 = 0):}`
`3x = (-1)^k*sin^(-1)(0) + n*pi => 3x = n*pi => x = (n*pi)/3`
`sin (3x) + 1 = 0 => sin (3x) = -1 => 3x = (-1)^k*sin^(-1)(-1) + n*pi`
`3x = -pi/2 + n*pi => x = -pi/6 + (n*pi)/3`
Hence, evaluating the general solutions to the given trigonometric equation yields `x = -pi/6 + (n*pi)/3, x = (n*pi)/3.`
Related Questions
- Solve for x : sin3x=2sin^3x
- 2 Educator Answers
- Solve the equation : 2*sin^2 x + cos x - 1 = 0
- 1 Educator Answer
- `2sin^2 (2x) = 1` Solve the equation.
- 1 Educator Answer
- Solve the equation: |3x+2|=|3-2x|Solve the equation: |3x+2|=|3-2x|
- 1 Educator Answer
- 2x + 1 = 3x - 2how to solve equation above
- 1 Educator Answer