Solve the derivative of expression: tan^2(ln(square root(4e^x+2x^2))) + cot^2(ln(square root(4e^x+2x^2)))
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,554 answers
starTop subjects are Math, Science, and Business
We have the expression: tan( ln (sqrt (4e^x+2x^2)))^2 + cot (ln (sqrt (4e^x + 2x^2)))^2
We have to find the derivative of the expression. We use the chain rule and start from the innermost function.
f(x) = tan( ln (sqrt (4e^x+2x^2)))^2 + cot (ln (sqrt (4e^x + 2x^2)))^2
f'(x) = 2*tan( ln (sqrt (4e^x+2x^2)))* (sec(ln (sqrt (4e^x+2x^2))))^2*(1/sqrt (4e^x+2x^2))*(1/2)*(1/sqrt (4e^x+2x^2))*(4e^x + 4x) + 2*cot (ln (sqrt (4e^x + 2x^2)))*(cosec(ln (sqrt (4e^x+2x^2))))^2*(1/sqrt (4e^x+2x^2))*(1/2)*(1/sqrt (4e^x+2x^2))*(4e^x + 4x)
=> [2*tan( ln (sqrt (4e^x+2x^2)))* (sec(ln (sqrt (4e^x+2x^2))))^2* + 2*cot (ln (sqrt (4e^x + 2x^2)))*(cosec(ln (sqrt (4e^x+2x^2))))^2]*(1/sqrt (4e^x+2x^2))*(1/2)*(1/sqrt (4e^x+2x^2))*(4e^x + 4x)
=> [2*tan( ln (sqrt (4e^x+2x^2)))* (sec(ln (sqrt (4e^x+2x^2))))^2* + 2*cot (ln (sqrt (4e^x + 2x^2)))*(cosec(ln (sqrt (4e^x+2x^2))))^2]*(1/(4e^x+2x^2))*(1/2)*(4e^x + 4x)
The required derivative is [2*tan( ln (sqrt (4e^x+2x^2)))* (sec(ln (sqrt (4e^x+2x^2))))^2* + 2*cot (ln (sqrt (4e^x + 2x^2)))*(cosec(ln (sqrt (4e^x+2x^2))))^2]*(1/(4e^x+2x^2))*(1/2)*(4e^x + 4x)
Related Questions
- mathEvaluate the derivative of the expression (2-x)^square root x.
- 1 Educator Answer
- What is the antiderivative of y=x/square root(x^2-9) ?
- 1 Educator Answer
- Determine the indefinite integral of y=x/square root(x^2+9), using substitution.
- 1 Educator Answer
- How to find derivative of f(x)=(2x^2+1)/(2x^2-1)
- 1 Educator Answer
- If limit of function f(x)=(sin x-cos x)/cos 2x is l, choose the good answer:...
- 1 Educator Answer
We notice that each term of the sum is a composed function, so, we'll calculate the derivative of each term.
We'll note the first term as f(x) and the 2nd term as g(x).
f(x) = tan^2(ln(square root(4e^x+2x^2)))
To determine the derivative of f(x), we'll apply the chain rule:
f'(x) = 2tan{ln[sqrt(4e^x+2x^2)]}*(1/[cos(lnsqrt(4e^x+2x^2)]^2*[1/2sqrt(4e^x+2x^2)]*(4e^x + 4x)
We'll calculate the derivative of g(x):
g'(x) = -2cot{ln[sqrt(4e^x+2x^2)]}*(1/[sin(lnsqrt(4e^x+2x^2)]^2*[1/2sqrt(4e^x+2x^2)]*(4e^x + 4x)
Now, we'll add f'(x) + g'(x):
tan{ln[sqrt(4e^x+2x^2)]}*(1/[cos(lnsqrt(4e^x+2x^2)]^2*[1/sqrt(4e^x+2x^2)]*(4e^x + 4x) - cot{ln[sqrt(4e^x+2x^2)]}*(1/[sin(lnsqrt(4e^x+2x^2)]^2*[1/sqrt(4e^x+2x^2)]*(4e^x + 4x)
We'll factorize by (4e^x + 4x)/sqrt(4e^x+2x^2)
f'(x) + g'(x) = [(4e^x + 4x)/sqrt(4e^x+2x^2)]*{tan ln[sqrt(4e^x+2x^2)]/[cos(lnsqrt(4e^x+2x^2)]^2] - cot ln[sqrt(4e^x+2x^2)]/[sin(lnsqrt(4e^x+2x^2)]^2}
Student Answers