# Solve for the center of mass of the 1st-Quadrant portion of the unit circle centered at the origin of radius 1.

## Expert Answers The coordinates of the center of mass of a plate are determined by the formulas

x_c=1/A int^b_axf(x)dx and y_c=1/A int^b_a 1/2 (f(x))^2dx , where A is the area of the plate. In case of the first-quadrant portion of the unit circle, the area is a quarter of the area of the circle with radius 1, pi*1^2 = pi . So A = pi/4 .

The formula f(x) of the first-quadrant portion of the unit circle is

y = sqrt(1 - x^2)  with lower limit a = 0 and upper limit b = 1 (see the graph below.)

Consider the integral for the x-coordinate of the center of mass:

int^1_0 xsqrt(1-x^2)dx . Use substitution to evaluate this integral:

u = 1 - x^2 ; u(0) = 1 and u(1) = 0

du = -2xdx , from where xdx = (du)/-2

Putting this into the integral, obtain

int^0_1 sqrt(u) (du)/-2=1/2 int^1_0 u^(1/2)du = 1/2*2/3*u^(3/2) |^1_0=1/3

Dividing this by the area of the quarter-circle, we get

x_c = (1/3)/(pi/4) = 4/(3pi)

Now let's evaluate the intergral for the y-coordinate of the center of mass. Because the quarter-circle is symmetric around the line y = x, we can expect y_c  to be equal to x_c .

int^1_0 1/2 (sqrt(1-x^2))^2 dx = 1/2 int^1_0 (1 - x^2)dx =

1/2 (x - x^3/3) |^1_0 = 1/2(1 - 1/3) = 1/3

Dividing this by A = pi/4 we get y_c = 4/(3pi) , as expected.

The coordinates of the center of mass of the first-quadrant unit circle centered at the origin are

x_c = y_c = 4/(3pi)

Approved by eNotes Editorial Team

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

• 30,000+ book summaries
• 20% study tools discount
• Ad-free content
• PDF downloads
• 300,000+ answers
• 5-star customer support