The situation is graphed below.

The blade rotates in a circle. The blade is shown in red.The tip of the blade is at the edge line of the circle. The Green line shows the ground.

A height of a point p at the tip of the blade will be;

...

## See

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The situation is graphed below.

The blade rotates in a circle. The blade is shown in red.The tip of the blade is at the edge line of the circle. The Green line shows the ground.

A height of a point p at the tip of the blade will be;

h = 6+height of point above center

If the angle formed between vertical and the red line is `theta` then;

`h = 6+2costheta`

It is given that for complete rotation it takes 36s.

Angular velocity `omega = theta/t`

Angular velocity `= (2pi)/36 = pi/18`

Since we have constant wind conditions omega will be constant always.

So if we consider a point p at time t with angle from vertical with theta;

`omega = theta/t`

`pi/18 = theta/t`

`theta= (pi*t)/18`

` h = 6+2costheta`

`h = 6+2cos((pit)/18)`

*So the height h of a point p at time t above ground is given by;*

`h = 6+2cos((pit)/18)`