Sketch the region bounded by the curves y=sec^2x and y=4  on the interval [-pi/2, pi/2].  Find the area of the sketched region.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The region bounded by the curves y = sec^2 x and y = 4 is shown in the graph below:

The curves `y = sec^2x` and y = 4 intersect at the point where `sec^2x = 4`

=> `cos^2x = 1/4`

=> `cos x = (1/2)` and `cos x = -1/2`

`x = pi/3` and `x = -pi/3`

The area of the bounded area is `int_(-pi/3)^(pi/3) 4 - sec^2x dx`

=> `4x - tan x|_(-pi/3)^(pi/3)`

=> `4*2*pi/3 - 2*sqrt 3`

=> `8*pi/3 - 2*sqrt 3`

The required area is `8*pi/3 - 2*sqrt 3`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial