Single Variable Calculus

Start Free Trial

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 18

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Evaluate $\displaystyle \int e^{-\theta} \cos 2 \theta d \theta$

If we let $u = e^{-\theta}$ and $dv = \cos 2 \theta d \theta$ then

$du = e^{-\theta} (-1) d \theta$ and $\displaystyle v = \int \cos 2 \theta d \theta = \frac{1}{2} \sin 2 \theta$

So,

$ \begin{equation} \begin{aligned} \int e^{-\theta} \cos 2 \theta d \theta = uv - \int v du &= \frac{e^{-\theta}}{2} \sin 2 \theta - \int \frac{1}{2} \sin 2 \theta \left( -e^{-\theta} \right)\\ \\ &= \frac{e^{-\theta}}{2} \sin 2 \theta + \frac{1}{2} \int e^{-\theta} \sin 2 \theta d \theta \end{aligned} \end{equation} $

To evaluate $\displaystyle \int e^{-\theta} \sin 2 \theta d \theta$, we must apply integration by parts once more... so,

If we let $u_1 = e^{-\theta}$ and $dv_1 = \sin 2 \theta d \theta$, then

$du_1 = e^{-\theta} (-1) d \theta$ and $ \displaystyle v_1 = \int \sin 2 \theta d \theta = -\frac{1}{2} \cos 2 \theta$

So,

$\displaystyle \int e^{- \theta} \sin 2 \theta d \theta = u_1 v_1 - \int v_1 d u_1 = \frac{e^{-\theta}\cos 2 \theta}{2}-\int \frac{e^{-\theta}\cos 2 \theta d \theta}{2}$

Going back from the equation,

$ \begin{equation} \begin{aligned} \int e^{- \theta} \cos 2 \theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta + \frac{1}{2} \left[ -\frac{e^{- \theta} \cos 2 \theta }{2} - \int \frac{e^{-\theta}\cos 2\theta}{2} d \theta \right]\\ \\ \int e^{- \theta} \cos 2 \theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}\cos 2 \theta}{4} - \frac{1}{4} \int e^{-\theta}\cos 2\theta d \theta \end{aligned} \end{equation} $

Let's continue the like terms.

$ \begin{equation} \begin{aligned} \int e^{- \theta} \cos 2 \theta d \theta + \frac{1}{4} \int e^{-\theta} \cos 2\theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}\cos 2 \theta}{4}\\ \frac{5}{4} \int e^{-\theta} \cos 2 \theta d \theta &= \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}\cos 2\theta}{4}\\ \\ \int e^{-\theta} \cos 2 \theta d \theta &= \left[ \frac{e^{-\theta}}{2} \sin 2 \theta - \frac{e^{-\theta}}{4} \cos 2 \theta \right] \frac{4}{5}\\ \\ \int e^{-\theta} \cos 2 \theta d \theta &= \frac{2e^{-\theta}\sin 2 \theta}{5} - \frac{e^{-\theta}\cos 2 \theta}{5} + c \end{aligned} \end{equation} $

Posted on

Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial

Already a member? Log in here.

Are you a teacher? Sign up now