Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 42
- print Print
- list Cite
Expert Answers
eNotes
| Certified Educator
calendarEducator since 2007
write13,548 answers
starTop subjects are Math, Literature, and Science
Determine the derivative of $\displaystyle y = x^2 \sin h^{-1} (2x)$. Simplify where possible.
$ \begin{equation} \begin{aligned} y' =& \frac{d}{dx} [x^2 \sin h^{-1} (2x)] \\ \\ y' =& x^2 \cdot \frac{d}{dx} [\sin h^{-1} (2x)] + \sin h^{-1} (2x) \cdot \frac{d}{dx} (x^2) \\ \\ y' =& x^2 \cdot \frac{1}{\sqrt{(2x)^2 + 1}} \cdot \frac{d}{dx} (2x) + \sin h^{-1} (2x) \cdot 2x \\ \\ y' =& \frac{x^2}{\sqrt{4x^2 + 1}} \cdot 2 + 2x \sin h^{-1} (2x) \\ \\ y' =& \frac{2x^2}{\sqrt{4x^2 + 1}} + 2 x \sin h^{-1} (2x) \end{aligned} \end{equation} $
Related Questions
- Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 32
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 60
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 4
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 40
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 56
- 1 Educator Answer