Determine the derivative of $\displaystyle y = x^2 \sin h^{-1} (2x)$. Simplify where possible.

$ \begin{equation} \begin{aligned} y' =& \frac{d}{dx} [x^2 \sin h^{-1} (2x)] \\ \\ y' =& x^2 \cdot \frac{d}{dx} [\sin h^{-1} (2x)] + \sin h^{-1} (2x) \cdot \frac{d}{dx} (x^2) \\ \\ y' =& x^2 \cdot \frac{1}{\sqrt{(2x)^2 + 1}} \cdot \frac{d}{dx} (2x) + \sin h^{-1} (2x) \cdot 2x \\ \\ y' =& \frac{x^2}{\sqrt{4x^2 + 1}} \cdot 2 + 2x \sin h^{-1} (2x) \\ \\ y' =& \frac{2x^2}{\sqrt{4x^2 + 1}} + 2 x \sin h^{-1} (2x) \end{aligned} \end{equation} $

Posted on

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now