Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 80
- print Print
- list Cite
Expert Answers
eNotes
| Certified Educator
calendarEducator since 2007
write13,548 answers
starTop subjects are Math, Literature, and Science
Find the integral $\displaystyle \int e^x (4 + e^x)^5 dx$
If we let $u = 4 + e^x$, then $du = e^x dx$. Thus,
$ \begin{equation} \begin{aligned} \int e^x (4 + e^x)^5 dx =& \int (4 + e^x)^5 e^x dx \\ \\ \int e^x (4 + e^x)^5 dx =& \int u^5 du \\ \\ \int e^x (4 + e^x)^5 dx =& \frac{u^{5 + 1}}{5 + 1} + C \\ \\ \int e^x (4 + e^x)^5 dx =& \frac{u^6}{6} + C \\ \\ \int e^x (4 + e^x)^5 dx =& \frac{(4 + e^x)^6}{6} + C \end{aligned} \end{equation} $
Related Questions
- Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 44
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 46
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 52
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 14
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.3-2, Section 7.3-2, Problem 48
- 1 Educator Answer