Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 66
- print Print
- list Cite
Expert Answers
calendarEducator since 2007
write13,548 answers
starTop subjects are Math, Literature, and Science
Determine the intervals of increase or decrease, the intervals of concavity and the points of inflection of $\displaystyle f(x) = \frac{e^x}{x^2}$.
$ \begin{equation} \begin{aligned} \text{if } f(x) =& \frac{e^x}{x^2}, \text{then by using Quotient Rule..} \\ \\ f'(x) =& \frac{x^2 (e^x) - e^x (2x)}{(x^2)^2} = \frac{xe^x (x - 2)}{x^4} = \frac{e^x (x - 2)}{x^3} \end{aligned} \end{equation} $
Again, by using Quotient Rule as well as Product Rule..
$ \begin{equation} \begin{aligned} f''(x) =& \frac{x^3 [e^x (1) + e^x (x - 2)] - [e^x(x - 2)] (3x^2) }{(x^3)^2} \\ \\ f''(x) =& \frac{x^2 [x^2 e^x - xe^x - 3xe^x + 6e^x]}{x^6} \\ \\ f''(x) =& \frac{x^2 e^x - 4xe^x + 6ex}{x^4} \\ \\ f''(x) =& \frac{e^x (x^2 - 4x + 6)}{x^4} \end{aligned} \end{equation} $
Now, to determine the intervals of increase or decrease, we must get first the critical numbers by setting $f'(x) = 0$. So,
$\displaystyle f'(x) = \frac{e^x (x - 2)}{x^3}$
when $f'(x) = 0$
$\displaystyle 0 = \frac{e^x (x - 2)}{x^3}$
The real solution is..
$x = 2$
Hence, the interval of increase or decrease is..
$ \begin{array}{|c|c|c|} \hline\\ \text{Interval} & f'(x) & f \\ \hline\\ x < 2 & - & \text{decreasing on } (- \infty, 2 ) \\ \hline\\ x > 2 & + & \text{increasing on } (2, \infty)\\ \hline \end{array} $
Next to determine the inflection points, we set $f''(x) = 0$. So,
$\displaystyle 0 = \frac{e^x (x^2 - 4x + 6)}{x^4}$
It shows that we have no inflection point because we don't have real solution for the equation. Let's evaluate $f''(x)$ with interval..
$ \begin{array}{|c|c|c|} \hline\\ \text{Interval} & f''(x) & \text{Concavity} \\ \hline\\ x < 0 & - & \text{Downward} \\ \hline\\ x > 0 & - & \text{Downward}\\ \hline \end{array} $
The function has downward concavity at $(- \infty, 0)$ and $(0, \infty)$.
Related Questions
- Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 44
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 64
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 70
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 14
- 1 Educator Answer
- Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 26
- 1 Educator Answer