Single Variable Calculus Questions and Answers

Start Your Free Trial

Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 66

Expert Answers info

eNotes eNotes educator | Certified Educator

calendarEducator since 2007

write13,548 answers

starTop subjects are Math, Literature, and Science

Determine the intervals of increase or decrease, the intervals of concavity and the points of inflection of $\displaystyle f(x) = \frac{e^x}{x^2}$.

$ \begin{equation} \begin{aligned} \text{if } f(x) =& \frac{e^x}{x^2}, \text{then by using Quotient Rule..} \\ \\ f'(x) =& \frac{x^2 (e^x) - e^x (2x)}{(x^2)^2} = \frac{xe^x (x - 2)}{x^4} = \frac{e^x (x - 2)}{x^3} \end{aligned} \end{equation} $

Again, by using Quotient Rule as well as Product Rule..

$ \begin{equation} \begin{aligned} f''(x) =& \frac{x^3 [e^x (1) + e^x (x - 2)] - [e^x(x - 2)] (3x^2) }{(x^3)^2} \\ \\ f''(x) =& \frac{x^2 [x^2 e^x - xe^x - 3xe^x + 6e^x]}{x^6} \\ \\ f''(x) =& \frac{x^2 e^x - 4xe^x + 6ex}{x^4} \\ \\ f''(x) =& \frac{e^x (x^2 - 4x + 6)}{x^4} \end{aligned} \end{equation} $

Now, to determine the intervals of increase or decrease, we must get first the critical numbers by setting $f'(x) = 0$. So,

$\displaystyle f'(x) = \frac{e^x (x - 2)}{x^3}$

when $f'(x) = 0$

$\displaystyle 0 = \frac{e^x (x - 2)}{x^3}$

The real solution is..

$x = 2$

Hence, the interval of increase or decrease is..

$ \begin{array}{|c|c|c|} \hline\\ \text{Interval} & f'(x) & f \\ \hline\\ x < 2 & - & \text{decreasing on } (- \infty, 2 ) \\ \hline\\ x > 2 & + & \text{increasing on } (2, \infty)\\ \hline \end{array} $

Next to determine the inflection points, we set $f''(x) = 0$. So,

$\displaystyle 0 = \frac{e^x (x^2 - 4x + 6)}{x^4}$

It shows that we have no inflection point because we don't have real solution for the equation. Let's evaluate $f''(x)$ with interval..

$ \begin{array}{|c|c|c|} \hline\\ \text{Interval} & f''(x) & \text{Concavity} \\ \hline\\ x < 0 & - & \text{Downward} \\ \hline\\ x > 0 & - & \text{Downward}\\ \hline \end{array} $

The function has downward concavity at $(- \infty, 0)$ and $(0, \infty)$.