Find the value generated by rotating $\mathscr{R}_1$ about $OC$

If you rotate $\mathscr{R}_1$ about $OC$, its cross section form a circular washer with outer radius 1 and inner radius $\sqrt[3]{y}$. Thus, the cross sectional area can be computed by subtracting the area of the outer circle to the inner circle. Hence, $A_{\text{outer}} = \pi (1)^2$ and $A_{\text{inner}} = \pi \left( \sqrt[3]{y}\right)^2$

Therefore, the value is...

$ \begin{equation} \begin{aligned} V &= \int^1_0 \left[ \pi (1)^2 - \pi (\sqrt[3]{y})^2 \right] dy\\ \\ V &= \pi \left[ y - \frac{y^{\frac{5}{3}}}{\frac{5}{3}}\right]^1_0\\ \\ V &= \pi \left( \left[ 1 - \frac{(1)^{\frac{5}{3}}}{\frac{5}{3}}\right] - \left[ 0 -\frac{(0)^{\frac{5}{3}}}{\frac{5}{3}} \right] \right)\\ \\ V &= \frac{2\pi}{5} \text{ cubic units} \end{aligned} \end{equation} $

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now