Single Variable Calculus

Start Free Trial

Single Variable Calculus, Chapter 6, 6.2, Section 6.2, Problem 20

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Find the value generated by rotating $\mathscr{R}_1$ about $OC$

If you rotate $\mathscr{R}_1$ about $OC$, its cross section form a circular washer with outer radius 1 and inner radius $\sqrt[3]{y}$. Thus, the cross sectional area can be computed by subtracting the area of the outer circle to the inner circle. Hence, $A_{\text{outer}} = \pi (1)^2$ and $A_{\text{inner}} = \pi \left( \sqrt[3]{y}\right)^2$

Therefore, the value is...

$ \begin{equation} \begin{aligned} V &= \int^1_0 \left[ \pi (1)^2 - \pi (\sqrt[3]{y})^2 \right] dy\\ \\ V &= \pi \left[ y - \frac{y^{\frac{5}{3}}}{\frac{5}{3}}\right]^1_0\\ \\ V &= \pi \left( \left[ 1 - \frac{(1)^{\frac{5}{3}}}{\frac{5}{3}}\right] - \left[ 0 -\frac{(0)^{\frac{5}{3}}}{\frac{5}{3}} \right] \right)\\ \\ V &= \frac{2\pi}{5} \text{ cubic units} \end{aligned} \end{equation} $

Posted on
Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial