Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 48
- print Print
- list Cite
Expert Answers
calendarEducator since 2007
write13,548 answers
starTop subjects are Math, Literature, and Science
Determine the area of the region bounded by the parabola $y = x^2$ and the tangent line to this parabola at $(1,1)$ and the $x$-axis.
We must first find the equation of the tangent line, so
$ \begin{equation} \begin{aligned} \text{if } y &= x^2, \text{ then}\\ \\ y' &= 2x \end{aligned} \end{equation} $
Recall that $y ' = \text{ slope}$, so at point $(1,1)$
$y' = 2(1) = 2$
Using point slope form to determine the equation of the line...
$ \begin{equation} \begin{aligned} y - y_1 &= m(x - x_1) \\ \\ y - 1 &= 2(x- 1)\\ \\ y &= 2x - 1 \end{aligned} \end{equation} $
Lets graph these functions to evaluate the area easier
To evaluate the area without dividing into sub region, we must use horizontal strip for the area bounded by the curves including $x$-axis $(y = 0)$
So, $\displaystyle A = \int^{y_2}_{y_1} \left( x_{\text{right}} - x_{\text{left}} \right)dy$
$ \begin{equation} \begin{aligned} A &= \int^1_0 \left[ \frac{y+1}{2} - \sqrt{y} \right] dy\\ \\ A &= \int^1_0 \left[ \frac{y}{2} + \frac{1}{2} - (y)^{\frac{1}{2}} \right]dy\\ \\ A &= \left[ \frac{y^2}{2(2)} + \frac{1}{2}y - \frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]^1_0\\ \\ A &= 0.0833 \text{ square units} \end{aligned} \end{equation} $
Related Questions
- Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 14
- 1 Educator Answer
- Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 8
- 1 Educator Answer
- Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 12
- 1 Educator Answer
- Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 4
- 1 Educator Answer
- Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 20
- 1 Educator Answer