Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 56
- print Print
- list Cite
Expert Answers
calendarEducator since 2007
write13,548 answers
starTop subjects are Math, Literature, and Science
Show that $\displaystyle \lim_{x \to \pm \infty} [f(x) -x^2 ] = 0$ if $\displaystyle f(x) = \frac{x^3 + 1}{x}$. Use this fact sketch the graph of $f$.
By using long division,
We can rewrite $f(x)$ as $\displaystyle f(x) = x^2 + \frac{1}{x}$, so..
$\displaystyle \lim_{x \to \pm \infty} [f(x) - x^2] = \frac{1}{x} = \frac{1}{\infty} = 0$
It means that the function is asymptotic to $y = x^2$
Now, using the guidelines of curve sketching
A. Domain,
The domain of the function is $(- \infty, 0) \bigcup (0, \infty)$
B. Intercepts,
Solving for $y$-intercept, when $x = 0$
$\displaystyle y = \frac{0^3 + 1}{0} = \frac{1}{0}$
$y$ intercept does not exist
Solving for $x$-intercept when $y = 0$
$ \begin{equation} \begin{aligned} 0 =& \frac{x^3 + 1}{x} \\ \\ 0 =& x^3 + 1 \\ \\ x =& -1 \end{aligned} \end{equation} $
C. Symmetry,
The function is not symmetric to either $y$ axis or origin by using symmetry test
D. Asymptotes,
For vertical asymptote, we set the denominator equal to 0, that is $x = 0$.
For horizontal asymptote, since $\lim_{x \to \pm \infty} = \pm \infty$, we can say that the function has no horizontal asymptote.
E. Intervals of Increase or Decrease,
If $\displaystyle f(x) = \frac{x^3 + 1}{x}$, then by using Quotient Rule..
$\displaystyle f'(x) = \frac{x (3x^2) - (x^3 + 1)(1) }{(x)^2}= \frac{3x^3 - x^3 - 1}{x^2} = \frac{2x^3 - 1}{x^2}$
when $f'(x) = 0$,
$ \begin{equation} \begin{aligned} 0 =& 2x^3 - 1 \\ \\ x^3 =& \frac{1}{2} \end{aligned} \end{equation} $
The critical number is,
$x = 0.7937$
Hence, the intervals of increase or decrease are..
$ \begin{array}{|c|c|c|} \hline\\ \text{Interval} & f'(x) & f \\ x < 0 & - & \text{decreasing on } (- \infty, 0) \\ 0 < x < 0.7937 & - & \text{decreasing on } (0, 0.7937) \\ x > 0.7937 & + & \text{increasing on } (0.7937, \infty)\\ \hline \end{array} $
F. Local Maximum and Minimum Values,
Since $f'(x)$ changes from negative to positive at $x = 0.7937, f(0.7937) = 1.89$ is a local minimum.
G. Concavity and Inflection Points
If $\displaystyle f'(x) = \frac{2x^3 - 1}{x^2}$, then by using Quotient Rule..
$ \begin{equation} \begin{aligned} f''(x) =& \frac{x^2 (6x^2) - (2x^3 - 1)(2x) }{(x^2)^2} \\ \\ f''(x) =& \frac{6x^4 - 4x^4 + 2x}{x^4} = \frac{2x^4 + 2x}{x^4} = \frac{2x (x^3 + 1)}{x^4} = \frac{2(x^3 + 1)}{x^3} \end{aligned} \end{equation} $
when $f''(x) = 0$,
$ \begin{equation} \begin{aligned} 0 =& 2(x^3 + 1) \\ \\ x^3 + 1 =& 0 \\ \\ x =& -1 \end{aligned} \end{equation} $
The inflection point is at $f(-1) = 0$
Hence, the concavity is..
$ \begin{array}{|c|c|c|} \hline\\ \text{Interval} & f''(x) & \text{Concavity} \\ x < -1 & + & \text{Upward} \\ -1 < x < 0 & - & \text{Downward} \\ x > 0 & + & \text{Upward}\\ \hline \end{array} $
H. Sketch the graph.
Related Questions
- Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 12
- 1 Educator Answer
- Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 2
- 1 Educator Answer
- Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 48
- 1 Educator Answer
- Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 4
- 1 Educator Answer
- Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 14
- 1 Educator Answer