Solve `(sin^2theta)/(1+costheta)=1` for `0<=theta<=360^@` :
`(sin^2theta)/(1+costheta)=1`
`sin^2theta=1+costheta` Use the Pythagorean relationship
`1-cos^2theta=1+costheta`
`cos^2theta+costheta=0`
`costheta(costheta+1)=0`
`costheta=0==>theta=90^@,270^@`
`costheta=-1==>theta=180^@` but this is extraneous -- the fraction is undefined at `theta=180^@`
-------------------------------------------------------------
The solutions are `theta=90^@,270^@`
-------------------------------------------------------------
The graph of `y=(sin^2theta)/(1+costheta)` and y=1:
**The graph is in radians so `theta=pi/2,(3pi)/2` **
*** Sorry about the costhheta -- it will not let me correct them. Hover over them and you will see that they are typed in correctly.