a) `vec(PQ)-vec(RQ)+vec(RS)=vec(PQ)+vec(QR)+vec(RS)`
using Chasles relation
`vec(PQ)+vec(QR)=vec(PR)`
Therefore
`vec(PQ)-vec(RQ)+vec(RS)=vec(PR)+vec(RS)`
Using Chasles relation again
Answer: `vec(PQ)-vec(RQ)+vec(RS)=vec(PS)`
b) `vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=vec(PS)+vec(RQ)+vec(SR)+vec(QP)`
`vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=(vec(PS)+vec(SR))+(vec(RQ)+vec(QP))`
`vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=vec(PR)+vec(RP)=vec(PP)=vec0`
Answer: `vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=vec(0)`
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.