# Write the single vector corresponding to each expression.a. PQ-RQ+RSb. PS+RQ-RS-PQ Each of the following vector expressions can be simplified and written as a single vector. Write the single vector corresponding to each expression.a. PQ-RQ+RSb. PS+RQ-RS-PQ(I don't know how to write the arrow sign to signify a vector on the computer, so assume that the arrow sign is inserted above each vector)

a) `vec(PQ)-vec(RQ)+vec(RS)=vec(PQ)+vec(QR)+vec(RS)`

using Chasles relation

`vec(PQ)+vec(QR)=vec(PR)`

Therefore

`vec(PQ)-vec(RQ)+vec(RS)=vec(PR)+vec(RS)`

Using Chasles relation again

b) `vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=vec(PS)+vec(RQ)+vec(SR)+vec(QP)`

`vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=(vec(PS)+vec(SR))+(vec(RQ)+vec(QP))`

`vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=vec(PR)+vec(RP)=vec(PP)=vec0`

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

a) `vec(PQ)-vec(RQ)+vec(RS)=vec(PQ)+vec(QR)+vec(RS)`

using Chasles relation

`vec(PQ)+vec(QR)=vec(PR)`

Therefore

`vec(PQ)-vec(RQ)+vec(RS)=vec(PR)+vec(RS)`

Using Chasles relation again

b) `vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=vec(PS)+vec(RQ)+vec(SR)+vec(QP)`

`vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=(vec(PS)+vec(SR))+(vec(RQ)+vec(QP))`

`vec(PS)+vec(RQ)-vec(RS)-vec(PQ)=vec(PR)+vec(RP)=vec(PP)=vec0`