Let `s` represent the side length of the cube. We want to estimate the relative error in measuring the volume if the error in measuring the sides is 2%.
The propagated error can be estimated by `DeltaV~~dV` where `DeltaV` is the actual error in the volume.
`V=s^3==>dV=3s^2ds`
`ds=+-.02` so `dV=+-.06s^2`
Thus an estimate for the error in the volume is `+-.06s^2`
To get the relative error we consider `(dV)/V` :
`(dV)/V=(3s^2ds)/s^3=(3ds)/s=3/s(+-.02)`
Thus the relative error depends on the measure of the side length.
---------------------------------------------------------------------
The relative error is `3/s(+-.02)`
--------------------------------------------------------------------
Ex Suppose the side is measured as 2in, `+-` .02in. Then `DeltaV=.242408` while the estimate yields `dV=3(2)^2(.02)=.24`
The relative error would be `.242408/8=.030301` while the estimate yields `.06/2=.03`